分式计算题: (x+2/x+1) - (x+3/x-2) - (x-4/x-3) + (x-5/x-4) 写一下详细步骤,谢谢(括号内是一个分式)
3个回答
展开全部
(x+2)/(x+1) - (x+3)/(x-2) - (x-4)/(x-3) + (x-5)/(x-4)
=[(x+1)+1]/(x+1)-[(x-2)+5]/(x-2)-[(x-3)-1]/(x-3)+[(x-4)-1]/(x-4)
=[1+1/(x+1)]-[1+5/(x-2)]-[1-1/(x-3)]+[1-1/(x-4)]
=1+1/(x+1)-1-5/(x-2)-1+1/(x-3)+1-1/(x-4)
=1/(x+1)-5/(x-2)+1/(x-3)-1/(x-4)
= -(4x+7)/(x+1)(x-2)-1/(x-3)(x-4)
= -[(4x+7)(x-3)(x-4)-(x+1)(x-2)]/(x+1)(x-2)(x-3)(x-4)
= -(4x^3-22x^2+86)/(x+1)(x-2)(x-3)(x-4)
答案如上,欢迎采纳!
=[(x+1)+1]/(x+1)-[(x-2)+5]/(x-2)-[(x-3)-1]/(x-3)+[(x-4)-1]/(x-4)
=[1+1/(x+1)]-[1+5/(x-2)]-[1-1/(x-3)]+[1-1/(x-4)]
=1+1/(x+1)-1-5/(x-2)-1+1/(x-3)+1-1/(x-4)
=1/(x+1)-5/(x-2)+1/(x-3)-1/(x-4)
= -(4x+7)/(x+1)(x-2)-1/(x-3)(x-4)
= -[(4x+7)(x-3)(x-4)-(x+1)(x-2)]/(x+1)(x-2)(x-3)(x-4)
= -(4x^3-22x^2+86)/(x+1)(x-2)(x-3)(x-4)
答案如上,欢迎采纳!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询