
设a,b∈R+,且a+b=1.求证:(a+1/a)(b+1/b)>=25/4
展开全部
(a+1/a)(b+1/b)
=(a^2+1)/a*(b^2+1)/b
=(a^2b^2+a^2+1+b^2)/ab
=[a^2b^2+(a+b)^2-2ab+1]/ab
=[a^2b^2+(1-2ab)+1]/ab
=[(ab-1)^2+1]/ab
(ab-1)^2+1>=25/16
0<ab<=1/4
所以(a+1/a)(b+1/b)>=25/4
=(a^2+1)/a*(b^2+1)/b
=(a^2b^2+a^2+1+b^2)/ab
=[a^2b^2+(a+b)^2-2ab+1]/ab
=[a^2b^2+(1-2ab)+1]/ab
=[(ab-1)^2+1]/ab
(ab-1)^2+1>=25/16
0<ab<=1/4
所以(a+1/a)(b+1/b)>=25/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询