如图所示,正方形ABCD内有一点P,且PA=1,PB=2,PC=3,求<APB的度数。

 我来答
cazyfrog
2014-03-14 · TA获得超过5.7万个赞
知道小有建树答主
回答量:7157
采纳率:98%
帮助的人:304万
展开全部

解:

将△BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ

因为△BAP≌△BCQ

所以AP=CQ,BP=BQ,∠ABP=∠CBQ,∠BPA=∠BQC

因为四边形DCBA是正方形

所以∠CBA=90°

所以∠ABP+∠CBP=90°

所以∠CBQ+∠CBP=90°

即∠PBQ=90°

所以△BPQ是等腰直角三角形

所以PQ=√2*BP,∠BQP=45°

因为PA=1,PB=2,PC=3

所以PQ=2√2,CQ=1

所以CP^2=9,PQ^2+CQ^2=8+K=9

所以CP^2=PQ^2+CQ^2

所以△CPQ是直角三角形且∠CQA=90°

所以∠BQC=90°+45°=135°

所以∠BPA=∠BQC=135°



【同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦】

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式