数列求解
1个回答
展开全部
(II)
f(x)=x^2-x+1
a(n+1) = f(an)
= (an)^2 - an +1
a(n+1)- 1= (an)^2 - an
1/[a(n+1)- 1] = 1/[an(an-1)]
= 1/[an-1] -1/an
1/an = 1/[an-1] - 1/[a(n+1)- 1]
(III)
a1=3/2
Prove: 1<1/a1+1/a2+........+1/a2013<2
Solution:
f(x)=x^2-x+1
f'(x) = 2x-1 > 0 x∈(1,∞)
f(x) 递增
=> an 递增
a2 = a1^2-a1+1
= 9/4-3/2 +1
= 7/4
1/a1+1/a2+........+1/a2013 > 1/a1+ 1/a2
= 2/3 + 4/7
= 26/21
> 1
1/a1+1/a2+........+1/a2013 = 1/(a1-1) - 1/(a2014-1)
= 2- 1/(a2014-1)
<2
1<1/a1+1/a2+........+1/a2013<2
f(x)=x^2-x+1
a(n+1) = f(an)
= (an)^2 - an +1
a(n+1)- 1= (an)^2 - an
1/[a(n+1)- 1] = 1/[an(an-1)]
= 1/[an-1] -1/an
1/an = 1/[an-1] - 1/[a(n+1)- 1]
(III)
a1=3/2
Prove: 1<1/a1+1/a2+........+1/a2013<2
Solution:
f(x)=x^2-x+1
f'(x) = 2x-1 > 0 x∈(1,∞)
f(x) 递增
=> an 递增
a2 = a1^2-a1+1
= 9/4-3/2 +1
= 7/4
1/a1+1/a2+........+1/a2013 > 1/a1+ 1/a2
= 2/3 + 4/7
= 26/21
> 1
1/a1+1/a2+........+1/a2013 = 1/(a1-1) - 1/(a2014-1)
= 2- 1/(a2014-1)
<2
1<1/a1+1/a2+........+1/a2013<2
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询