对称式和轮换式有什么区别

 我来答
汽车解说员小达人
高能答主

2020-02-10 · 用力答题,不用力生活
知道小有建树答主
回答量:1104
采纳率:100%
帮助的人:41.8万
展开全部

1、在含有多个字母,如三元代数式f (x,y,z)中,如果字母x, y, z任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式。

2、在含有多个字母的代数式f (x,y,z)中,如果字母x, y, z循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式。

A^2+B^2+C^2显然是轮换对称式那么两两组合的话前面已经有板有3次因子(A+B)(B+C)(C+A),剩下2次的空间,所以看两次的组合只有两种,A^2+B^2+C^2,AB+BC+CA,所以用待定系数K(A^2+B^2+C^2)+m(AB+BC+CA)。


扩展资料:

1、第一型曲线积分的轮换对称性

定理3 设L是xoy面上的一条光滑或分段光滑的曲线弧,L对坐标x,y具有轮换对称性,f(x,y)在L上连续,则



2、第二型曲线积分的轮换对称性

定理4 设L是xoy面上的一条光滑或分段光滑的有向曲线弧,L对坐标x,y具有轮换对称性,f(x,y)在L上连续,则



3、第一型曲面积分的轮换对称性

定理5 设∑是光滑或分片光滑的曲面,∑对坐标x,y,z具有轮换对称性,f(x,y,z)在∑上连续,则



4、第二型曲面积分的轮换对称性

定理6 设∑是光滑或分片光滑的有向曲面,∑对坐标x,y,z具有轮换对称性,f(x,y,z)在∑上连续,则



参考资料:百度百科-积分轮换对称性

一夕dream
推荐于2017-11-26 · TA获得超过4515个赞
知道小有建树答主
回答量:1373
采纳率:25%
帮助的人:738万
展开全部
首先要说明的时,轮换式完整的叫法是轮换对称式。因为几何上对称除了轴对称之外,还有中心对称、旋转对称等,相应地,在代数里对称也有较多的对称。这与我们日常语言中的概念是有区别的。
下面指出轮换式和对称式的区别:对称式交换任意两个变量的值,结果不变,如x+y+z; 轮换对称式一定要轮换,例如x->y,y->z,z->x才能使结果不变,如(x-y)/z+(y-z)/x+(z-x)/y,光换两个不行。 第二个问题是分解因式的应用,现举实例如下:
①(a+b+c)^5-a^5-b^5-c^5 ②8(a+b+c)^3-(b+c)^3-(c+a)^3-(a+b)^3 ③x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz
(1) 分析: 将原式看成X的多项式,可知 当X=-Y时, 原式=(-Y+Y+Z)^5-(-Y)^5-Y^5-Z^5 =0 所以原式有因式(X+Y),因为是对称式,所以原式还有因式(Y+Z),(Z+X) 设原式=(X+Y)(Y+Z)(Z+X)[K(X^2+Y^2+Z^2)+T(XY+YZ+ZX)] 令X=1,Y=1,Z=0,代入得 30=2(2K+T); 令X=1,Y=-1,Z=0,代入得-30=-2(5K-2T) 解得K=5,T=5 所以原式=5(X+Y)(Y+Z)(Z+X)(X^2+Y^2+Z^2+XY+YZ+ZX) (2) 分析 设原式=[(2A+2B+2C)^3-(B+C)^3]-[(C+A)^3+(A+B)^3] 然后利用立方差和立方和公式展开,并令整理后的式子 =(2A+B+C)(M-N) 其中由轮换多项式可确定(M-N)中含有(A+2B+C),(A+B+2C) 比较系数的原式=3(2A+B+C) (A+2B+C)(A+B+2C) (3)分析 设X=Y+Z,则有 原式=(X+Y)^3+Y^2(2Z+Y)+Z^2(2Y+Z)-[(Y+Z)^3+Y^3+Z^3]-2(Y+Z)YZ =(Y+Z)^3+2Y^2Z+Y^3+2YZ^2+Z^3-(Y+Z)^3-Y^3-Z^3-2Y^2Z-2YZ^2=0 所以原式有因式(Y+Z-X),因为对称式,故也有因式(Z+X-Y),(X+Y-Z) 设原式=K(Y+Z-X)(X+Y-Z)(Z+X-Y) 其中K为待定系数,比较等式两边XYZ项的系数 右=K(1-1+1-1-1-1)=-2K ,左=-2 所以解得K=1 所以原式=(Y+Z-X)(X+Y-Z)(Z+X-Y) 对称与轮换对称很重要,以后一直到大学都很有用。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
RuyiXP
2014-01-22 · TA获得超过2302个赞
知道小有建树答主
回答量:652
采纳率:0%
帮助的人:736万
展开全部
对称式交换任意两个变量的值,结果不变,如x+y+z;
轮换对称式一定要轮换,例如x->y,y->z,z->x才能使结果不变,如(x-y)/z+(y-z)/x+(z-x)/y,光换两个不行。

第二个问题是不是给一个式子,比如xy+yz+zx,求它等于0的解?如果是这样的话,一般情况下有无数组解。

所有的一次轮换对称式都能写成k(a+b+c),后者就是一个基本单元。比如在一个3次的式子里,他的一次部分肯定是k(a+b+c)的形式,没有第二种可能。

补充:
一般来说式子等于0时xyz的取值不外乎x=0,x=y,x+y=0,x+y+z=0这类的简单关系,如果这些都不行那就基本上不可能找到了。

首先一个式子展开后如果存在一次项,那肯定含有a+b+c。但(a-b)(b-c)(c-a)展开后都是三次的单项式,不满足上面的条件,所以不一定会有a+b+c

另外一个式子有a+b+c的因子等价于当a+b+c=0时这个式子的值为0。所以用给x,y,z赋特殊值的方法就能判断到底有哪些因式

这个问题很重要,以后一直到大学都很有用,不明白的话直接叫我就行
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
真诚到永远水瓶
2017-11-04
知道答主
回答量:2
采纳率:0%
帮助的人:1241
展开全部
好(✪▽✪)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式