如图,在直角坐标系中,以点A(根号3,0)为圆心,以2根号3为半径的圆与x轴相交于点B,C,与y轴
相交于点D,E1):若二次函数y=3/1x²+bx+c的图像经过C,D两点,求这个二次函数的关系式,并判断点B是否在该抛物线上。(2):求在(1)中的抛物线的对...
相交于点D,E1):若二次函数y=3/1x²+bx+c的图像经过C,D两点,求这个二次函数的关系式,并判断点B是否在该抛物线上。
(2):求在(1)中的抛物线的对称轴上且使得△PBD的周长最小的点P的坐标. 展开
(2):求在(1)中的抛物线的对称轴上且使得△PBD的周长最小的点P的坐标. 展开
1个回答
2013-11-16 · 知道合伙人软件行家
关注
展开全部
B(-根号3,0) C(3根号3,0) D(0,-3) E(0,3)
1
Y=X方/3+BX+C过(3根号3,0)(0,-3)
若过(-根号3,0)
则-B/(2/3)=-3B/2=根号3 B=-2根号3/3
C/(1/3)=-根号3*3根号3=-9=3C C=-3
即Y=X方/3-2根号3*X/3-3
把(0,-3)代入成立
所以,B在抛物线上
2
连接CD,交对称轴于点P,点P即为所求
P(根号3,-2)
1
Y=X方/3+BX+C过(3根号3,0)(0,-3)
若过(-根号3,0)
则-B/(2/3)=-3B/2=根号3 B=-2根号3/3
C/(1/3)=-根号3*3根号3=-9=3C C=-3
即Y=X方/3-2根号3*X/3-3
把(0,-3)代入成立
所以,B在抛物线上
2
连接CD,交对称轴于点P,点P即为所求
P(根号3,-2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询