求解释,关于概率论 中心极限定理的 这个是怎么来的
1个回答
展开全部
这里有一般结论: 如果(1维连续型)随机变量Y的概率密度函数为f(x),
那么对任意实数a > 0, Z = Y/a的密度函数为g(x) = a·f(ax).
证明: 由a > 0, Y, Z的分布函数满足:
P(Z ≤ b) = P(aZ ≤ ab) = P(Y ≤ ab), 对任意实数b成立,
即有恒等式: ∫{-∞,b} g(x)dx = ∫{-∞,ab} f(x)dx (这里f, g分别为Y, Z的密度函数).
两边对b求导即得g(b) = a·f(ab) (变限积分求导).
也即g(x) = a·f(ax).
对于你的问题, 直接应用上述结果:
因为S_n的密度函数为p^(*n)(x), 所以S_n/√n的密度函数为√n·p^(*n)(√n·x).
那么对任意实数a > 0, Z = Y/a的密度函数为g(x) = a·f(ax).
证明: 由a > 0, Y, Z的分布函数满足:
P(Z ≤ b) = P(aZ ≤ ab) = P(Y ≤ ab), 对任意实数b成立,
即有恒等式: ∫{-∞,b} g(x)dx = ∫{-∞,ab} f(x)dx (这里f, g分别为Y, Z的密度函数).
两边对b求导即得g(b) = a·f(ab) (变限积分求导).
也即g(x) = a·f(ax).
对于你的问题, 直接应用上述结果:
因为S_n的密度函数为p^(*n)(x), 所以S_n/√n的密度函数为√n·p^(*n)(√n·x).
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询