已知a^4+b^4+c^4+d^4=4abcd,求证a=b=c=d
1个回答
2014-01-03
展开全部
解:由已知等式添项,得:
a^4+b^4+c^4+d^4-4abcd=0
(a^4-2a^2b^2+b^4)+(c^4-2c^2d^2+d^4)+(2a^2b^2-4abcd+2c^2d^2)=0
(a^4-2a^2b^2+b^4)+(c^4-2c^2d^2+d^4)+2(a^2b^2-2abcd+c^2d^2)=0
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
由于平方数都大于或等于0,且a、b、c、d>0,所以由上式可知:
(a^2-b^2)^2=0,可得:a^2=b^2,即a=b,
(c^2-d^2)^2=0,可得:c^2=d^2,即c=d,
2(ab-cd)^2=0,可得:ab=cd;
由a=b,c=d,ab=cd可得:a=b=c=d,
a^4+b^4+c^4+d^4-4abcd=0
(a^4-2a^2b^2+b^4)+(c^4-2c^2d^2+d^4)+(2a^2b^2-4abcd+2c^2d^2)=0
(a^4-2a^2b^2+b^4)+(c^4-2c^2d^2+d^4)+2(a^2b^2-2abcd+c^2d^2)=0
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
由于平方数都大于或等于0,且a、b、c、d>0,所以由上式可知:
(a^2-b^2)^2=0,可得:a^2=b^2,即a=b,
(c^2-d^2)^2=0,可得:c^2=d^2,即c=d,
2(ab-cd)^2=0,可得:ab=cd;
由a=b,c=d,ab=cd可得:a=b=c=d,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询