在平面直角坐标系中,已知点O为坐标原点,点A(0,4).△AOB是等边三角形,点B在第一象限.(Ⅰ)如图①
在平面直角坐标系中,已知点O为坐标原点,点A(0,4).△AOB是等边三角形,点B在第一象限.(Ⅰ)如图①,求点B的坐标;(Ⅱ)点P是x轴上的一个动点,连接AP,以点A为...
在平面直角坐标系中,已知点O为坐标原点,点A(0,4).△AOB是等边三角形,点B在第一象限.(Ⅰ)如图①,求点B的坐标;(Ⅱ)点P是x轴上的一个动点,连接AP,以点A为旋转中心,把△AOP逆时针旋转,使边AO与AB重合,得△ABD.①如图②,当点P运动到点(3,0)时,求此时点D的坐标;②求在点P运动过程中,使△OPD的面积等于34的点P的坐标(直接写出结果即可).
展开
1个回答
展开全部
解:(Ⅰ)如图①,过点B作BE⊥y轴于点E,作BF⊥x轴于点F,
∵△AOB是等边三角形,OA=4,
∴BF=OE=2.
在Rt△OBF中,
由勾股定理,得OF=
=2
.
∴点B的坐标为(2
,2).
(Ⅱ)①如图②,过点B作BE⊥y轴于点E,作BF⊥x轴于点F,过点D作DH⊥x轴于点H,
延长EB交DH于点G.
则BG⊥DH.
∵△ABD由△AOP旋转得到,
∴△ABD≌△AOP.
∴∠ABD=∠AOP=90°,BD=OP=
.
∵△AOB是等边三角形,
∴∠ABO=60°.
∵BE⊥OA,
∴∠ABE=30°,∴∠DBG=60°,∠BDG=30°.
在Rt△DBG中,BG=
DB=
OP=
.
∵sin60°=
,∴DG=DB?sin60°=
×
∵△AOB是等边三角形,OA=4,
∴BF=OE=2.
在Rt△OBF中,
由勾股定理,得OF=
OB2?BF2 |
3 |
∴点B的坐标为(2
3 |
(Ⅱ)①如图②,过点B作BE⊥y轴于点E,作BF⊥x轴于点F,过点D作DH⊥x轴于点H,
延长EB交DH于点G.
则BG⊥DH.
∵△ABD由△AOP旋转得到,
∴△ABD≌△AOP.
∴∠ABD=∠AOP=90°,BD=OP=
3 |
∵△AOB是等边三角形,
∴∠ABO=60°.
∵BE⊥OA,
∴∠ABE=30°,∴∠DBG=60°,∠BDG=30°.
在Rt△DBG中,BG=
1 |
2 |
1 |
2 |
1 |
2 |
3 |
∵sin60°=
DG |
DB |
3 |
|