如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为

如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为A.81B.81/2C.81/4D.81/8... 如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为 A.81 B.81 /2 C.81 /4 D.81 /8 展开
 我来答
唯爱_海397
推荐于2016-01-13 · 超过74用户采纳过TA的回答
知道答主
回答量:132
采纳率:0%
帮助的人:174万
展开全部
C

分析:由∠ADE=60°,可证得△ABD∽△DCE;可用等边三角形的边长表示出DC的长,进而根据相似三角形的对应边成比例,求得△ABC的边长,然后由三角形的面积公式S= absinC求解.
∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC-BD=AB-3;
∵∠ADE=∠B=60°,
又∠ADC=∠B+∠BAD,即60°+∠CDE=60°+∠BAD,
∴∠CDE=∠BAD,
又∵∠B=∠C=60°,
∴△ABD∽△DCE;
= ,即 =
解得,AB=9;
∴S ABC = AB?BC?sin60°=81
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式