已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2-anSn+2an=0.(1)求an.(2)若bn=2n-1,记{1bnSn
已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2-anSn+2an=0.(1)求an.(2)若bn=2n-1,记{1bnSn}前n项和为Tn,求证:Tn...
已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2-anSn+2an=0.(1)求an.(2)若bn=2n-1,记{1bnSn}前n项和为Tn,求证:Tn<3.
展开
1个回答
展开全部
(1)由S1=a1=1,Sn2-anSn+2an=0知,
(1+a2)2-a2(1+a2)+2a2=0,
解得,a2=-
,S2=
,
∵Sn2-anSn+2an=0,
∴Sn2-(Sn-Sn-1)Sn+2(Sn-Sn-1)=0,
∴Sn-1Sn+2Sn-2Sn-1=0,
∴
?
=
,
则数列{
}是以1为首项,
为公差的等差数列,
则
=1+
(n-1)=
,
则Sn=
,
则当n≥2时,an=Sn-Sn-1=
-
=-
;
则an=
.
(2)由题意,
Tn=
×1+
×
+
×2+…+
×
①;
2Tn=2×1+
×
+
×2+…+
×
②;
②-①得,
Tn=2+
(
+
+
+…+
)-
×
=2+
×
-
=3-
<3.
(1+a2)2-a2(1+a2)+2a2=0,
解得,a2=-
1 |
3 |
2 |
3 |
∵Sn2-anSn+2an=0,
∴Sn2-(Sn-Sn-1)Sn+2(Sn-Sn-1)=0,
∴Sn-1Sn+2Sn-2Sn-1=0,
∴
1 |
Sn |
1 |
Sn?1 |
1 |
2 |
则数列{
1 |
Sn |
1 |
2 |
则
1 |
Sn |
1 |
2 |
n+1 |
2 |
则Sn=
2 |
n+1 |
则当n≥2时,an=Sn-Sn-1=
2 |
n+1 |
2 |
n |
2 |
n(n+1) |
则an=
|
(2)由题意,
Tn=
1 |
21?1 |
1 |
22?1 |
3 |
2 |
1 |
23?1 |
1 |
2n?1 |
n+1 |
2 |
2Tn=2×1+
1 |
21?1 |
3 |
2 |
1 |
22?1 |
1 |
2n?2 |
n+1 |
2 |
②-①得,
Tn=2+
1 |
2 |
1 |
21?1 |
1 |
22?1 |
1 |
23?1 |
1 |
2n?2 |
1 |
2n?1 |
n+1 |
2 |
=2+
1 |
2 |
1?
| ||
1?
|
n+1 |
2n |
=3-
n+3 |
2n |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询