1*50+2*49+3*48+4*47+...+49*2+50*1怎么简便运算?
应用等差数列公式为:1/3×(1+2+3+......+n)×(1+2n)计算。
解:1×50+2×49+3×48+4×47+...+49×2+50×1
=1×50+2×(50-1)+...+50×(50-49)
=50×(1+2+3+...+50)-(1×0+2×1+3×2+...+50×49)
=50×(1+50)×25-1^2+1+2^2+2+……+49^2+49
=63750-(1^2+2^2+……49^2)+(1+2+……+49)
=63750-1/6 × 49×(49+1)(49×2+1)+49×50/2
=63750-41650
=22100
扩展资料
等差数列公式:末项=首项+(项数-1)×公差;项数=(末项-首项)÷公差+1;首项=末项-(项数-1)×公差;和=(首项+末项)×项数÷2;末项:最后一位数;首项:第一位数;项数:一共有几位数;和:求一共数的总和。
已知数列{an},若对于所有的 n≥2,都有 an-an-1=d(d 为常数),我们就称数列{an}为等差数列(Arithmetic progression),其中d叫做这个等差数列的公差。
等差数列{an}中每一个数ai都叫做等差数列的项。有限项等差数列 a1、a2、a3、…、an 中,n叫做等差数列的项数,a1叫做等差数列的首项,an叫做等差数列的末项。
基本公式 an=a1+(n-1)·d=am+(n-m)·d n=(an-a1)÷d+1 d=(an-a1)÷(n-1)=(ai-aj)÷(i-j)
参考资料:百度百科-等差数列
22100。
拥有等差数列公式为:1/3*(1+2+3+......+n)*(1+2n)
1*50+2*49+3*48+4*47+...+49*2+50*1=1*50+2*(50-1)+...+50*(50-49)=50*(1+2+3+...+50)-(1*0+2*1+3*2+...+50*49)
=50*(1+50)*25-1^2+1+2^2+2+……+49^2+49
=63750-(1^2+2^2+……49^2)+(1+2+……+49)=63750-1/6 * 49*(49+1)(49*2+1)+49*50/2
=63750-41650
=22100
扩展资料
综合算式(四则运算)应当注意的地方:
1、如果只有加和减或者只有乘和除,从左往右计算,例如:2+1-1=2,先算2+1的得数,2+1的得数再减1。
2、如果一级运算和二级运算,同时有,先算二级运算
3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。
4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。
5、在括号里面,也要先算三级,然后到二级、一级。
1*50+2*49+3*48+4*47+...+49*2+50*1=1*50+2*(50-1)+...+50*(50-49)=50*(1+2+3+...+50)-(1*0+2*1+3*2+...+50*49)=50*(1+50)*25-1^2+1+2^2+2+……+49^2+49=63750-(1^2+2^2+……49^2)+(1+2+……+49)=63750-1/6 * 49*(49+1)(49*2+1)+49*50/2=63750-41650=22100
2015-10-09
=51Σx-Σx^2
=51*(51*50)/2-50(50+1)(2*50+1)/6
=22100