矩阵A和A的转置相乘得到的是什么?
4个回答
展开全部
如果A是正交矩阵,那相乘就等于单位矩阵了,如果不是,那就是他们俩相乘。
若B为n阶Hermite正定矩阵,则存在n阶矩阵A 且A为下三角矩阵,使得B等于 A乘以A的共轭转置。放在实数域内就是 A乘以A的转置矩阵了,呵呵,其实 这就是所谓矩阵的Cholesky分解。
扩展资料
设 A是 m×n 的矩阵。
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
展开全部
只能说A和A的转置相乘可以得到一个对称阵,没有其它的一般性结论。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询