
∫dx/[x(1+x^8)]=_____
2017-08-16
展开全部
1-x^8 = -(1+x^8) +2
∫(1-x^8)/[x(1+x^8)] dx
=-∫(1/x) dx + 2∫dx/[x(1+x^8)]
=-ln|x| +2∫dx/[x(1+x^8)]
let
x^4 = tany
4x^3 dx = (secy)^2 .dy
∫dx/[x(1+x^8)]
=(1/4)∫(4x^3 dx)/[x^4.(1+x^8)]
=(1/4)∫ (secy)^2 .dy/[tany(secy)^2]
=(1/4)∫ dy/tany
=(1/4)ln|siny| + C'
=(1/4)ln| x^4/√(1+x^8)| + C'
∫(1-x^8)/[x(1+x^8)] dx
=-ln|x| +2∫dx/[x(1+x^8)]
=-ln|x| +(1/2)ln| x^4/√(1+x^8)| + C
∫(1-x^8)/[x(1+x^8)] dx
=-∫(1/x) dx + 2∫dx/[x(1+x^8)]
=-ln|x| +2∫dx/[x(1+x^8)]
let
x^4 = tany
4x^3 dx = (secy)^2 .dy
∫dx/[x(1+x^8)]
=(1/4)∫(4x^3 dx)/[x^4.(1+x^8)]
=(1/4)∫ (secy)^2 .dy/[tany(secy)^2]
=(1/4)∫ dy/tany
=(1/4)ln|siny| + C'
=(1/4)ln| x^4/√(1+x^8)| + C'
∫(1-x^8)/[x(1+x^8)] dx
=-ln|x| +2∫dx/[x(1+x^8)]
=-ln|x| +(1/2)ln| x^4/√(1+x^8)| + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询