(a+b)n次方展开
(a+b)^n=C(0,n)a^n+C(1,n)a^(n-1)b+....+C(k,n)a^(n-k)b^k+.....+C(n,n)b^n.
C(k,n)表示从n个不同元素中取出k个的组合数。
二项式定理用于开高次方。由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
扩展资料:
当n为奇数时,由1+2+3+4+...+N与s=N+(N-1)+(N-2)+...+1相加得:
2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+...+[(N-1)+(N-N-1)]+N
=N+N+N+...+N加或减去所有添加的二项式展开式数
=(1+N)N减去所有添加的二项式展开式数。
当n为偶数时,由1+2+3+4+5+...+N与s=N+(N-1)+(N-2)+...+1相加得:
2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+[4+(N-4)]...+[(N-1)+(N-N-1)]+N
=2N+2[(N-2)+(N-4)+(N-6)+...0或1]加或减去所有添加的二项式展开式数
又当n为偶数时,由1+2+3+4+5+6+...+N与s=N+(N-1)+(N-2)+...+1相加得:
2s=[N+1]+[(N-1)+2]+[(N-2)+3]+...+[(N-N-1)+(N-1)]
=2[(N-1)+(N-3)+(N-5)+...0或1]加或减去所有添加的二项式展开式数,合并n为偶数时2S的两个计算结果,可以得到s=N+(N-1)+(N-2)+...+1的计算公式。
其中,所有添加的二项式展开式数,按下列二项式展开式确定,如此可以顺利进行自然数的1至n次幂的求和公式的递进推导,最终可以推导至李善兰自然数幂求和公式。
参考资料来源:百度百科——二项式定理
(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个。
扩展资料
二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”(如图1),满足了三次以上开方的需要。此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。
参考资料二项式定理_百度百科
2018-07-04