如图 在矩形ABCD中,已知AB=2,AD=3,E 、F分别是AB、CD的中点。设P是AD上一点,∠PFB=3∠FBC,求线段AP的长。

嘉怡之吻
2011-02-19 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4514
采纳率:0%
帮助的人:3373万
展开全部
你好!
原题应为:已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点.
(1)在边AD上取一点M,使点A关于BM的对称点C恰好落在EF上.设BM与EF相交于点N,求证:四边形ANGM是菱形;
(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP的长.
考点:菱形的判定;矩形的性质
.专题:计算题;证明题.
分析:(1)设AG交MN于O,由题意易得AO=GO,AG⊥MN,要证四边形ANGM是菱形,还需证明OM=ON,又可证明AD‖EF‖BC.∴MO:ON=AO:OG=1:1,∴MO=NO;
(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA= 根号(DF的平方+PD的平方)=根号【1-(3-PA)的平方】,求得PA=3分之5 .
解答:(1)证明:设AG交MN于O,则
∵A、G关于BM对称,
∴AO=GO,AG⊥MN.
∵E、F分别是矩形ABCD中AB、CD的中点,
∴AE=BE,AE‖DF且AE=DF,
∴AD‖EF‖BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG与MN互相平分且互相垂直.
∴四边形ANGM是菱形.

(2)连接AF,
∵AD‖EF‖BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴PA= 根号(DF的平方+PD的平方)=根号【1-(3-PA)的平方】.
∴PA=3分之5 .
点评:本题主要考查菱形和平行四边形的识别及推理论证能力.对角线互相垂直平分的四边形是菱形.
祝楼主钱途无限,事事都给力!
百度网友2356ae8
2011-02-19 · TA获得超过641个赞
知道小有建树答主
回答量:213
采纳率:0%
帮助的人:82.3万
展开全部
没有图 只好把过程给你写下

设∠FBC=α 则∠PFB=3α 连接EF
EF//BC 所以 ∠FBC=∠EFB=α
∠EFP=∠PFB-∠EFB=2α 又 EF//AD 所以∠EFP=∠DPF=2α
在 三角形 DPF中 tan∠DPF=DF:DP=tan2α=2tanα/[1-tan^2(α)]
在三角形FBC中 tan∠FBC=tanα=FC:BC=1/2 所以tanα=1/2
代入上式 得
tan∠DPF=DF:DP=tan2α=2tanα/[1-tan^2(α)] = (2* 1/3)/[1-(1/3)^2]=3/4
所以 DF:DP=3/4 其中DF=1/2 CD =1 DP=4/3
AP=AD-DP=3- 4/3 =5/3

这个题主要是用到了 正切的 倍角公式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友728a320
2011-02-19 · TA获得超过909个赞
知道小有建树答主
回答量:796
采纳率:61%
帮助的人:362万
展开全部
设∠FBC=α,则tanα=2/3
tan∠PFD=tan(π-3α)=-tan3α=
AP=-2/tan3α+3/2
解出tan3α即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式