已知方程8x^2+(m-1)x+(m+7)=0有两个正实数根,求m的取值范围.

卡帕之家
2011-02-19 · TA获得超过3987个赞
知道小有建树答主
回答量:716
采纳率:0%
帮助的人:637万
展开全部
首先,△>0,(m-1)^2-4*8*(m+7)>0,m^2-34m-223>0
得出(m<17-16√2,m>17+16√2);
然后,运用韦达定理:两根之积=c/a,两根之和=-b/a
(m+7)/8>0,-(m-1)/8>0
得出-7<m<1
综上所述,17-16√2<m<1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式