观察二次函数图象如何确定a,b.c的值?

 我来答
姚桂兰寒婉
2020-02-01 · TA获得超过3.5万个赞
知道小有建树答主
回答量:1.2万
采纳率:30%
帮助的人:855万
展开全部
1先看抛物线的开口,如果开口向上,则a>0,如果开口向下,则a<0.a=0时图像是一条直线。
2然后看抛物线与y轴的交点,如果交在y轴的上半轴,则c>0,如果交在下半轴,则c<0,如果交在原点,则c=0.
3由于抛物线的对称轴是x=-b/4a,所以如果对称轴在x轴正半轴,则-b/4a>0,再根据a值确定b值。相反,若对称轴在x轴负半轴,则-b/4a<0,若对称轴是y轴,则b=0.
庚新兰达云
2019-07-27 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:2207万
展开全部
1先看抛物线的开口,如果开口向上,则a>0,如果开口向下,则a<0.a=0时图像是一条直线。
2然后看抛物线与y轴的交点,如果交在y轴的上半轴,则c>0,如果交在下半轴,则c<0,如果交在原点,则c=0.
3由于抛物线的对称轴是x=-b/4a,所以如果对称轴在x轴正半轴,则-b/4a>0,再根据a值确定b值。相反,若对称轴在x轴负半轴,则-b/4a<0,若对称轴是y轴,则b=0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
雍义吕子
2019-11-25 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:1136万
展开全部
二次函数:y=ax^2+bx+c
(a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
塞痴督谷之
2019-07-29 · TA获得超过3875个赞
知道大有可为答主
回答量:3086
采纳率:29%
帮助的人:462万
展开全部
二次函数:y=ax^2+bx+c
(a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式