求由抛物线y的平方=2x与直线y=x-4所围图形的面积

 我来答
lzj86430115
科技发烧友

2020-05-30 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2202
采纳率:34%
帮助的人:234万
展开全部

抛物线y²=2x(1)与直线y=x-4(2)的交点可以解方程组(1)、(2)求得,交点为A(2,-2),B(8,4),如下图所示,运用定积分元素法求面积,得出所围成图形的面积s=∫(-2,4上下限)(y+4-1/2y²)dy。

子荤豆豆瓜M
高能答主

2021-10-14 · 答题姿势总跟别人不同
知道小有建树答主
回答量:639
采纳率:100%
帮助的人:12.1万
展开全部

y^2=2x => x=y^2/2        x-y=4 => x=y+4

将x=y^2/2代入x=y+4解得两曲线交点纵坐标分别为y1=-2,y2=4

∴S=∫(y1,y2)[(y+4)-y^2/2]dy

=(y1,y2)[y^2/2+4y-y^3/6]

=[4^2/2+4*4-4^3/6]-[(-2)^2/2+4*(-2)-(-2)^3/6]

=(8+16-32/3)-(2-8+4/3)

=20

简介

在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。

抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2023-08-18 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1665万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友b89cc3f
2020-05-30 · TA获得超过1135个赞
知道小有建树答主
回答量:7250
采纳率:40%
帮助的人:446万
展开全部
求由抛物线y的平方=2x与直线y=x-4所围图形的面积数学知识讲座
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式