a+b+c=0,a^2+b^2+c^2=1,求a的最大值
3个回答
展开全部
由已知得:b+c=-a,b^2+c^2=6-a^2
∴bc=1/2·(2bc)=1/2[(b+c)^2-(b^2+c^2)]=a^2-3
从而b、c是方程:x^2+ax+a^2-3=0的两个实数根
∴△≥0
∴a^2-4(a^2-3)≥0
a^2≤4
∴-2≤a≤2
即a的最大值为2
∴bc=1/2·(2bc)=1/2[(b+c)^2-(b^2+c^2)]=a^2-3
从而b、c是方程:x^2+ax+a^2-3=0的两个实数根
∴△≥0
∴a^2-4(a^2-3)≥0
a^2≤4
∴-2≤a≤2
即a的最大值为2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好
由题知,
b+c=-2a
b²+c²=1-a²
即
b+c=-2a
bc=(5a²-1)/2
可以把b,c视为方程x²+2ax+(5a²-1)/2=0的两根
因为b,c存在
故方程有解即判别式≥=0
求得-√3/3≤a≤√3/3
即a最大值为√3/3
由题知,
b+c=-2a
b²+c²=1-a²
即
b+c=-2a
bc=(5a²-1)/2
可以把b,c视为方程x²+2ax+(5a²-1)/2=0的两根
因为b,c存在
故方程有解即判别式≥=0
求得-√3/3≤a≤√3/3
即a最大值为√3/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询