设f(x)在x=x0处可导,且f(x0)=a,则

1.设f(x)在x=x0的某领域可导.且f‘(x0)=A,则x->x0时f’(x)存在等于A.为什么是错的.... 1.设f(x)在x=x0的某领域可导.且f ‘(x0)=A,则x->x0时f ’(x)存在等于A.为什么是错的. 展开
 我来答
板阵廖漫
2020-09-08 · TA获得超过1117个赞
知道小有建树答主
回答量:1426
采纳率:100%
帮助的人:6.3万
展开全部
结论倒过来是对的,即lim f'(x)=A,则f'(x0)=A.但反之未必对.
因为f(x)在x0可导,很有可能f'(x)在x0的邻域内不存在;
即使存在,也可以没有极限.简单的例子是:
f(x)=x^2sin(1/x),当x不等于0时;
f(0)=0.
这个函数处处可导,但lim f'(x)不存在.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式