怎么理解二维随机变量X, Y独立?
1个回答
展开全部
二维随机变量(X,Y)独立的定义式为:F(x,y)=F(x)*F(y )
等价的命题如下:
二维离散型随机变量X,Y独立的充分必要条件为 :
对(X,Y)任意可能的取值(xi,yj)均有P(X=xi,Y=yj)=P(X=xi)*P(Y=yj)
2. 二维连续型随机变量X,Y独立的充分必要条件为 :
f(x,y)=f(x)*f(y )
这里,f(x,y)为(X,Y)的联合概率密度函数,f(x)为一维随机变量X的概率密度函数,f(y )为一维随机变量Y的概率密度函数。
等价的命题如下:
二维离散型随机变量X,Y独立的充分必要条件为 :
对(X,Y)任意可能的取值(xi,yj)均有P(X=xi,Y=yj)=P(X=xi)*P(Y=yj)
2. 二维连续型随机变量X,Y独立的充分必要条件为 :
f(x,y)=f(x)*f(y )
这里,f(x,y)为(X,Y)的联合概率密度函数,f(x)为一维随机变量X的概率密度函数,f(y )为一维随机变量Y的概率密度函数。
上海华然企业咨询
2024-10-21 广告
2024-10-21 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询