
在△ABC 中,∠A=60°,a=3,则(a+b+c)/(sinA+sinB+sinC)=
2个回答
展开全部
根据正弦定理:
设a/sinA=b/sinB=c/sinC =k ,从而a=ksinA,b=ksinB,c=ksinC
则(a+b+c)/(sinA+sinB+sinC)= (ksinA+ksinB+ksinC))/(sinA+sinB+sinC)
= k = a/sinA = 3/sin60°=2√3 ( 二倍根三)
设a/sinA=b/sinB=c/sinC =k ,从而a=ksinA,b=ksinB,c=ksinC
则(a+b+c)/(sinA+sinB+sinC)= (ksinA+ksinB+ksinC))/(sinA+sinB+sinC)
= k = a/sinA = 3/sin60°=2√3 ( 二倍根三)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询