已知中心在原点的椭圆的一个焦点(0,根号2),且过点A(1,根号2),过A作倾斜角互补的两条直线,它们与椭圆

已知中心在原点的椭圆的一个焦点(0,根号2),且过点A(1,根号2),过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为B和C,(1)求证直线BC的斜率为定值,并求... 已知中心在原点的椭圆的一个焦点(0,根号2),且过点A(1,根号2),过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为B和C,(1)求证直线BC的斜率为定值,并求出这个定值(2)求三角形ABC的面积最大值 展开
78101557
高赞答主

2011-02-21 · 点赞后记得关注哦
知道大有可为答主
回答量:2万
采纳率:75%
帮助的人:1.2亿
展开全部
已知中心在原点的椭圆的一个焦点(0,根号2),且过点A(1,根号2),过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为B和C,(1)求证直线BC的斜率为定值,并求出这个定值(2)求三角形ABC的面积最大值。
解:(1)设椭圆方程为y²/a²+x²/b²=1,其中c=√2
代入A坐标(1,√2)
2/a²+1/b²=1
a²-b²=2
解得a²=4,b²=2
椭圆方程:y²/4+x²/2=1即y²+2x²=4
(2)直线AC和AB的斜率为相反数
设AC的斜率为k,则AB为-k
直线AC:y-√2=k(x-1)即y=k(x-1)+√2
直线AB:y-√2=-k(x-1)即y=-k(x-1)+√2
AC方程代入椭圆,
整理:(k²+2)x²-(2k²-2√2k)x+k²-2√2k-2=0
韦达定理:x1×x2=(k²-2√2k-2)/(k²+2)
所以点C横坐标=(k²-2√2k-2)/(k²+2),纵坐标=k(-2√2k-4)/(k²+2)+√2
AB方程代入椭圆
整理:(k²+2)x²-(2k²+2√2k)x+k²+2√2k-2=0
韦达定理:x1×x2=(k²+2√2k-2)/(k²+2)
所以点C横坐标=(k²+2√2k-2)/(k²+2),纵坐标=-k(2√2k-4)/(k²+2)+√2
直线BC的斜率:
[k(-2√2k-4)/(k²+2)+√2+k(2√2k-4)/(k²+2)-√2]/[(k²-2√2k-2)/(k²+2)-(k²+2√2k-2)/(k²+2)]
=[-8k/(k²+2)]/[-4√2k/(k²+2)]
=√2为定值
(3)设BC直线为:y=√2x+b
点A到直线距离d=|b|/√3
直线y=√2x+b代入椭圆
整理:4x²+2√2bx+b²-4=0
韦达定理:x1+x2=-√2b/2,x1×x2=(b²-4)/4
BC=√(1+2)[(x1+x2)²-4x1x2]=√3*√(-1/2b²+4)
S△ABC=1/2*d*BC=1/2√(-1/2b^4+4b²)
令t=-1/2b^4+4b²
t=-1/2(b^4-8b²)
=-1/2(b²-4)²+8
t为二次函数,当b²=4即b=2或-2时,t有最大值=8
所以S△ABC最大值=√2
天汉颂歌
2011-02-21 · TA获得超过4125个赞
知道小有建树答主
回答量:1193
采纳率:92%
帮助的人:378万
展开全部
1、由题意知:椭圆方程应当是x²/b²+y²/a²=1.(a,b待定,a>b>0)且a²=b²+c²=b²+2①又点A在椭圆上,所以得1/b²+2/a²=1即a²+2b²=a²b²②,由①②联解得:a=2,b=√2.因此椭圆方程是:y²/4+x²/2=1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式