展开全部
cosx+cos2x+......+cosnx
=1/2sin(x/2)*(cosx*2sin(x/2)+cos2x*2sin(x/2)+......+cosnx*2sin(x/2))
=1/2sin(x/2)*(sin(3x/2)-sin(x/2)+sin(5x/2)-sin(3x/2)+......+sin(n+1/2)x-sin(n-1/2)x)
=1/2sin(x/2)*(sin(n+1/2)x-sin(x/2))
=1/2sin(x/2)*(2*sinnx*cos(n+1)x)
=(sinnx*cos(n+1)x)/sin(x/2)
或用,[sin(n+1/2)x/sin(x/2)]/2-1/2
=1/2sin(x/2)*(cosx*2sin(x/2)+cos2x*2sin(x/2)+......+cosnx*2sin(x/2))
=1/2sin(x/2)*(sin(3x/2)-sin(x/2)+sin(5x/2)-sin(3x/2)+......+sin(n+1/2)x-sin(n-1/2)x)
=1/2sin(x/2)*(sin(n+1/2)x-sin(x/2))
=1/2sin(x/2)*(2*sinnx*cos(n+1)x)
=(sinnx*cos(n+1)x)/sin(x/2)
或用,[sin(n+1/2)x/sin(x/2)]/2-1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询