在RT△ABC中AB=AC,∠BAC=90°,E,F是BC上的两点,且∠EAF=45°,判断以BE,EF,FC为边的三角形形状!

匿名用户
2011-02-21
展开全部
将△AEB逆时针转动直至AB与AC重合,即形成的新△AE'C≌△AEB,
AE'=AE,CE'=BE.
∠E'AC=∠EAB,∠ABE=∠ACE'=∠ACB=45°(直角三角形AB=AC),BE=CE'.

连接E'F.
∠E'AF=∠E'AC+∠FAC=∠EAB+∠FAC=90°-45°=45°
又∠EAF=45°,所以∠EAF=∠E'AF,
又AE'=AE,AF为公用边,△E'AF≌△EAF,E'F=EF,
又∠ABE=∠ACE'=∠ACB=45°,∠ACE'+∠ACB=45°+45°=90°,
△CE'F为RT△,E'F²=CE'²+FC²,
又CE'=BE,E'F=EF,
EF²=BE²+FC²
所以以BE,EF,FC为边的三角形是直角三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式