在摆线x=a(t-sint),y=(1-cost)上求分摆线第一拱成1:3的点的坐标
多谢啦在摆线x=a(t-sint),y=a(1-cost)上求分摆线第一拱成1:3的点的坐标,大侠们我题目打错了,这个才是我要问的题目...
多谢啦
在摆线x=a(t-sint),y=a(1-cost)上求分摆线第一拱成1:3的点的坐标,大侠们我题目打错了,这个才是我要问的题目 展开
在摆线x=a(t-sint),y=a(1-cost)上求分摆线第一拱成1:3的点的坐标,大侠们我题目打错了,这个才是我要问的题目 展开
5个回答
展开全部
解题过程如下:
S=∫|y| dx=∫a(1 -cost)d(a(t - sint))
=∫a^2(1 -cost)^2dt
S=∫(0,2π)a^2*(1 -cost)^2dt
=a^2*∫(0,2π)(1-2cost+(cost)^2)dt
=a^2*∫(0,2π)1dt-2*a^2*∫(0,2π)costdt+a^2*∫(0,2π)(cost)^2dt
=3/2*a^2*∫(0,2π)1dt-2*a^2*∫(0,2π)costdt+1/2*a^2*∫(0,2π)cos2tdt
=3/2*a^2*(2π-0)-2*a^2*(sin2π-sin0)+1/4*a^2*(sin4π-sin0)
=3π*a^2
扩展资料:
x=r*(t-sint); y=r*(1-cost)r为圆的半径, t是圆的半径所经过的弧度(滚动角),当t由0变到2π时,动点就画出了摆线的一支,称为一拱。
伽利略的观察和实验还不够精确.实际上,摆的摆幅愈大,摆动周期就愈长,只不过这种周期的变化是很小的。所以,如果用这种摆来制作时钟,摆的振幅会因为摩擦和空气阻力而愈来愈小,时钟也因此愈走愈快。
参考资料来源:百度百科-摆线
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-03-07
展开全部
例1求摆线 的长
解 , , 。
弧长
例2摆线 上求分摆线第一拱成1:3的点的坐标
解 设A点满足要求,此时 。根据例2摆线第一拱成弧长 , 。由条件弧OA的长为 ,即 , ,点A的坐标为
解 , , 。
弧长
例2摆线 上求分摆线第一拱成1:3的点的坐标
解 设A点满足要求,此时 。根据例2摆线第一拱成弧长 , 。由条件弧OA的长为 ,即 , ,点A的坐标为
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |