在△ABC中,若sinA=2sinBcosC且sin²A=sin²B+sin²C,试判断△ABC的形状
1个回答
展开全部
sin²A=sin²B+sin²C 得a²=b²+c² 可知是直角三角形
sinA=2sinBcosC 这里A=π-(B+C)
sin(π-(B+C))=sin(B+C)=2sinBcosC
得sinBcosC+cosBsinC=2sinBcosC
cosBsinC-sinBcosC=0
sin(C-B)=0
可知B=C
所以这个三角形的形状是等腰直角三角形
sinA=2sinBcosC 这里A=π-(B+C)
sin(π-(B+C))=sin(B+C)=2sinBcosC
得sinBcosC+cosBsinC=2sinBcosC
cosBsinC-sinBcosC=0
sin(C-B)=0
可知B=C
所以这个三角形的形状是等腰直角三角形
参考资料: B
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询