
若α∈(0,π/2),证明sin^3α+cos^3α<1
1个回答
2011-02-24 · 知道合伙人教育行家
关注

展开全部
α∈(0,π/2)
sin^3α+cos^3α
=sin^3α+cosα*cos^2α
=sin^3α+cosα*(1-sin^2α)
=sin^3α+cosα-sin^2αcosα
=sin^3α-sin^2αcosα+cosα
=sin^2α(1-cosα)+cosα
=(1-cos^2α)(1-cosα)+cosα
=1-cos^2α-cosα+cos^3α+cosα
=1-cos^2α+cos^3α
=1-cos^2α(1-cosα)
∵cos^2α>0,1-cosα>0
∴cos^2α(1-cosα)>0
∴1-cos^2α(1-cosα)<1
sin^3α+cos^3α
=sin^3α+cosα*cos^2α
=sin^3α+cosα*(1-sin^2α)
=sin^3α+cosα-sin^2αcosα
=sin^3α-sin^2αcosα+cosα
=sin^2α(1-cosα)+cosα
=(1-cos^2α)(1-cosα)+cosα
=1-cos^2α-cosα+cos^3α+cosα
=1-cos^2α+cos^3α
=1-cos^2α(1-cosα)
∵cos^2α>0,1-cosα>0
∴cos^2α(1-cosα)>0
∴1-cos^2α(1-cosα)<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询