∑(x^2n)*(-1)^(n-1)/n(2n-1)

 我来答
茹翊神谕者

2021-07-05 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1536万
展开全部

简单计算一下即可,答案如图所示

tetateta
推荐于2021-01-10 · TA获得超过3999个赞
知道小有建树答主
回答量:739
采纳率:0%
帮助的人:393万
展开全部
设f(x)=∑(1->∞)(x^2n)*(-1)^(n-1)/n(2n-1)=∑(1->∞)(x^2n)*(-1)^(n-1)/n(2n-1)
f'(x)=∑(1->∞)(2x^(2n-1))*(-1)^(n-1)/(2n-1)
f''(x)=∑(1->∞)(2x^(2n-2))*(-1)^(n-1)
=2∑(0->∞)(x^(2n))*(-1)^n
=2∑(0->∞)((x^2)^n))*(-1)^n=2∑(1->∞)(-x^2)^n)
=2(1+-x^2+x^4-x^+...)
=2/(1+x^2)
f'(x)=∫(-x^2)/(1+x^2)= 2arctanx
f(x)= -log(x^2+1)+2 x tan^(-1)(x)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式