已知sin(x+30°)=1/4,求sin(210°+x)+cos²(150°-x)的值
展开全部
sin(210°+x) + [cos(150°-x)]^2
=sin[180°+(30°+x)] + {cos[180°-(30°+x)]}^2
=-sin(30°+x) + [-cos(30°+x)]^2
=-1/4 + [cos(30°+x)]^2
=-1/4 + 1 - [sin(30°+x)]^2
=-1/4 + 1 - 1/16
=11/16
=sin[180°+(30°+x)] + {cos[180°-(30°+x)]}^2
=-sin(30°+x) + [-cos(30°+x)]^2
=-1/4 + [cos(30°+x)]^2
=-1/4 + 1 - [sin(30°+x)]^2
=-1/4 + 1 - 1/16
=11/16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询