如图,正方形ABCD的边长为4,M、N分别是边BC、CD上的两个动点,当点M在BC边上运动(不与B 、C 重合)时,

(1)当点M运动到什么位置时,△ABM相似△AMN,求的值。(2)设梯形ABCN的面积为Y,求Y与X之间的函数解析式;并求当点M运动到什么位置时,四边形ABCN的面积最大... (1)当点M运动到什么位置时,△ABM相似 △AMN,求的值。
(2)设梯形ABCN的面积为Y,求Y与X之间的函数解析式; 并求当点M运动到什么位置时,四边形ABCN的面积最大,最大面积是多少?
展开
匿名用户
2011-02-28
展开全部
①∵AM⊥MN,∴∠AMB+∠CMN=90°
在△AMB中,∠AMB+∠MAB=90°
∴∠MAB=∠NMC,又∠ABM=∠MCN=90°
∴△ABM∽△MCN

②△ABM∽△MCN
∴BM/CN=AB/MC
BC=AB=4,BM=x,MC=BC-BM=4-x
∴x/CN=4/(4-x)
∴CN=x(4-x)/4
∴梯形ABCN面积
y=(AB+CN)×BC/2
=[4+x(4-x)/4]×2
=-0.5x²+2x+8
=-0.5(x-2)²+10
∴y与x之间的函数关系式为y=-(1/2)x²+2x+8
当x=2,即M点运动到BC中点时,梯形ABCN面积最大为10


当Rt△ABM∽Rt△AMN时,
有AB/AM=BM/MN
得AB²/AM²=BM²/MN²
即16/(16+BM²)=BM²/[(4-BM)²+CN²]
∴BM²(16+BM²)=16[(4-BM)²+CN²]
BM=x,CN=x(4-x)/4
∴x²(16+x²)=16[(4-x)²+x²(4-x)²/16]
x²(16+x²)=(4-x)²(16+x²)
解得x=2
即M点运动到BC中点时,Rt△ABM∽Rt△AMN
此时x=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式