线性代数里的秩怎么数?

 我来答
是你找到了我
高粉答主

2019-08-15 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43.7万
展开全部

线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。在这种情况下,如果它的秩等于方程(未知数)的数目,则方程有唯一解;如果秩小于未知数个数,则有无穷多个解。

扩展资料:

矩阵秩的性质:

1、矩阵的行秩,列秩,秩都相等。

2、初等变换不改变矩阵的秩。

3、矩阵的乘积的秩Rab<=min{Ra,Rb};

4、设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

5、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

低调侃大山
2018-07-27 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374614

向TA提问 私信TA
展开全部
  1. 矩阵的秩



2. 向量组的秩

向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目,即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
永远的风景
2011-03-01 · TA获得超过454个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:171万
展开全部
第一步,将矩阵化为行阶梯形。化行阶梯形的步骤是先找出一个最简单的一行,移到第一行,将它依次和下面的行加减。
第二步,从上往下,将不是全为零的行数数出来就是矩阵的秩。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式