x的x次方求导

帐号已注销
2021-08-18 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:170万
展开全部

(x^x)'=(x^x)(lnx+1)

求法:令x^x=y

两边取对数:lny=xlnx

两边求导,应用复合函数求导法则

(1/y)y'=lnx+1

y'=y(lnx+1)

即:y'=(x^x)(lnx+1)

一个数的零次方

任何非零数的0次方都等于1。原因如下

通常代表3次方

5的3次方是125,即5×5×5=125

5的2次方是25,即5×5=25

5的1次方是5,即5×1=5

由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:

5 ÷ 5 = 1

十张树
2020-12-24 · 数十载,张而不需,是树
十张树
采纳数:70 获赞数:3489

向TA提问 私信TA
展开全部

令:y=x^(x)

则:y=x^(x)=e^[ln(x^x)]=e^(xlnx);

即:y'=(x^x)(lnx+1)。

求导作为微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

扩展资料:

1、C'=0(C为常数);

2、(Xn)'=nX(n-1) (n∈R);

3、(sinX)'=cosX;

4、(cosX)'=-sinX;

5、(aX)'=aXIna (ln为自然对数);

6、(logaX)'=1/(Xlna) (a>0,且a≠1);

7、(tanX)'=1/(cosX)2=(secX)2

8、(cotX)'=-1/(sinX)2=-(cscX)2

9、(secX)'=tanX secX;

10、(cscX)'=-cotX cscX;

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白雪忘冬
高粉答主

2019-06-10 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376640

向TA提问 私信TA
展开全部

(x^x)'=(x^x)(lnx+1)

求法:令x^x=y

两边取对数:lny=xlnx

两边求导,应用复合函数求导法则:

(1/y)y'=lnx+1

y'=y(lnx+1)

即:y'=(x^x)(lnx+1)

扩展资料

求导法则:对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

隐函数理论的基本问题就是:在适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=ƒ(x),不仅单值连续,而且连续可微,其导数由完全确定。隐函数存在定理就用于断定就是这样的一个条件,不仅必要,而且充分。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
永远的风景
2011-03-01 · TA获得超过454个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:171万
展开全部
x^x (1 + Lnx)
x^x可以写成e^(Lnx^x)=e^(xLnx),现在求导会了吧。 这是第一种方法。
第二种方法y=x^x,首先两端对x取对数得Lny=xLnx,两端对x求导数,记住将y看做x的函数,得(1/y)*y'=(1+ Lnx),移项得结果
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xuanff
2011-03-01 · TA获得超过16.7万个赞
知道大有可为答主
回答量:1.8万
采纳率:0%
帮助的人:3.2亿
展开全部
x^x = e^(xlnx)
所以(x^x)' = [e^(xlnx)]' = e^(xlnx) * (xlnx)' = x^x * (x*1/x + lnx) = x^x * (1 + lnx)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式