设函数f(x)在上[0,a]连续,在(0,a)内可导,且f(a)=0,证明:在(0,a)中至少存在一点ξ, 使f(ξ)+ξf'(x)=0
F(x)=xf(x),则由题意知F(x)在[0,a]上连续,在(0,a)内可导试问为什么F(x)在(0,a)内可导???...
F(x)=xf(x),则由题意知F(x)在[0,a]上连续,在(0,a)内可导
试问为什么F(x)在(0,a)内可导??? 展开
试问为什么F(x)在(0,a)内可导??? 展开
2011-03-07
展开全部
(1)若不嫌麻烦,可以根据最基本的可导函数定义来证明。
(2)根据函数的求导法则:两个可导函数(都在X0可导)的积在X0也是可导的,再由X0的任意性(X0在两个共同定义域内)可知它们的积在整个公共定义域内是可导的。
(2)根据函数的求导法则:两个可导函数(都在X0可导)的积在X0也是可导的,再由X0的任意性(X0在两个共同定义域内)可知它们的积在整个公共定义域内是可导的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |