设函数f(x)在上[0,a]连续,在(0,a)内可导,且f(a)=0,证明:在(0,a)中至少存在一点ξ, 使f(ξ)+ξf'(x)=0

F(x)=xf(x),则由题意知F(x)在[0,a]上连续,在(0,a)内可导试问为什么F(x)在(0,a)内可导???... F(x)=xf(x),则由题意知F(x)在[0,a]上连续,在(0,a)内可导
试问为什么F(x)在(0,a)内可导???
展开
顺心且无私的小雀
2011-03-14 · TA获得超过375个赞
知道小有建树答主
回答量:121
采纳率:0%
帮助的人:0
展开全部

可以用罗尔中值定理,构造函数F(x)=xf(x),则F(0)=0,F(a)=0,由f(x)的性质知,

F(x)在[0,a]连续,(0,a)可导,故满足罗尔中值定理的条件,在(0,a)中至少存在一点ξ使

F(ξ)=f(ξ)+ξf'(ξ)=0,则原题得证 

对于(2),根据函数的求导法则:两个可导函数(都在X0可导)的积在X0也是可导的,对于这道题,我可以给出证明:

匿名用户
2011-03-07
展开全部
(1)若不嫌麻烦,可以根据最基本的可导函数定义来证明。
(2)根据函数的求导法则:两个可导函数(都在X0可导)的积在X0也是可导的,再由X0的任意性(X0在两个共同定义域内)可知它们的积在整个公共定义域内是可导的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式