求y=1-2/(2^x+t)的值域

hulang880108
2011-03-06 · TA获得超过597个赞
知道小有建树答主
回答量:198
采纳率:0%
帮助的人:292万
展开全部
这个要用反函数来解,将X、Y对换得到一个新的方程,则此方程的定义域(X取值范围)就是原方程的值域(Y取值范围)。
首先将X、Y互换得到以下方程:
X=1-2/(2^y+t),然后化简整理,写成y=……的形式,得:
2^y=2/(1-x)-t。 根据对数函数的定义,
y=log2 [2/(1-x)-t] 以2为底, [2/(1-x)-t]的对数。则要使这个函数有意义,即
要满足: 2/(1-x)-t >0 式①
现在,麻烦的时候到了,要分段讨论t。
I:t>0时,x>1-2/t
II:t=0时,x<1
III:t<0时,x<1-2/t
所以既然新方程的定义域求出来了,那么原方程的值域就是它,将x还原成y就可以了。
则y=1-2/(2^x+t)的值域为:
I:t>0时,y>1-2/t
II:t=0时,y<1
III:t<0时,y<1-2/t
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式