如图所示,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD……
2个回答
2011-03-14
展开全部
∵AB是半圆的直径
∴∠ADB=90°
∵DO=BO
∴∠DBO=∠BDO
∵∠PDA=∠PBD
∴∠DBO=∠PDA
∴∠PDA+∠ADO=90°
所以PD是圆o的切线(连接DO)
∴∠ADB=90°
∵DO=BO
∴∠DBO=∠BDO
∵∠PDA=∠PBD
∴∠DBO=∠PDA
∴∠PDA+∠ADO=90°
所以PD是圆o的切线(连接DO)
展开全部
分析:(1)要证是直线PD是为⊙O的切线,需证∠PDO=90°.因为AB为直径,所以∠ADO+∠ODB=90°,由∠PDA=∠PBD=∠ODB可得∠ODA+∠PDA=90°,即∠PDO=90°.
(2)根据已知可证△AOD为等边三角形,∠P=30°.在Rt△POD中运用三角函数可求解.解答:解:(1)PD是⊙O的切线.理由如下:
∵AB为直径,
∴∠ADO+∠ODB=90°.
∵∠PDA=∠PBD=∠ODB,
∴∠ODA+∠PDA=90°.即∠PDO=90°.
∴PD是⊙O的切线.
(2)∵∠BDE=60°,∠ADB=90°,
∴∠PDA=180°-90°-60°=30°,
又PD为半圆的切线,所以∠PDO=90°,
∴∠ADO=60°,又OA=OD,
∴△ADO为等边三角形,∠AOD=60°.
在Rt△POD中,PD=3,
∴OD=1,OP=2,
PA=PO-OA=2-1=1.点评:此题考查了切线的判定及三角函数的有关计算等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
(2)根据已知可证△AOD为等边三角形,∠P=30°.在Rt△POD中运用三角函数可求解.解答:解:(1)PD是⊙O的切线.理由如下:
∵AB为直径,
∴∠ADO+∠ODB=90°.
∵∠PDA=∠PBD=∠ODB,
∴∠ODA+∠PDA=90°.即∠PDO=90°.
∴PD是⊙O的切线.
(2)∵∠BDE=60°,∠ADB=90°,
∴∠PDA=180°-90°-60°=30°,
又PD为半圆的切线,所以∠PDO=90°,
∴∠ADO=60°,又OA=OD,
∴△ADO为等边三角形,∠AOD=60°.
在Rt△POD中,PD=3,
∴OD=1,OP=2,
PA=PO-OA=2-1=1.点评:此题考查了切线的判定及三角函数的有关计算等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询