一元三次方程韦达定理证明

证明过程仔细。... 证明过程仔细。 展开
旅游小帮手一齐
高粉答主

2021-09-20 · 关注我不会让你失望
知道小有建树答主
回答量:564
采纳率:100%
帮助的人:14.4万
展开全部

解析如下:

三次方程为ax^3+bx^2+cx+d=0

三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0,

即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0

对比原方程ax^3+bx^2+cx+d=0 可知

x1+x2+x3=-b/a

x1*x2+x2*x3+x3*x1=c/a

x1*x2*x3=-d/a

整数的除法法则

1)从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数。

2)除到被除数的哪一位,就在那一位上面写上商。

3)每次除后余下的数必须比除数小。

除数是整数的小数除法法则:

1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。

2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

求丰Ro
推荐于2017-12-15 · TA获得超过1432个赞
知道小有建树答主
回答量:268
采纳率:100%
帮助的人:155万
展开全部
设三次方程为ax^3+bx^2+cx+d=0
三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0,
即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0
对比原方程ax^3+bx^2+cx+d=0 可知
x1+x2+x3=-b/a
x1*x2+x2*x3+x3*x1=c/a
x1*x2*x3=-d/a
追问
a(x-x1)(x-x2)(x-x3)=0 为什么
追答
应为x1,x2,x3是方程ax^3+bx^2+cx+d=0的三个根
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式