在三角形ABC中 若AB=2 AC=根号二倍BC 则三角形ABC最大面积为
2个回答
展开全部
解:
设BC=x
AC=√2x
根据余弦定理可得
cosC=(x^2+2x^2-4)/(2√2x^2)=(3x^2-4)/(2√2x^2)
sinC=√1-[(3x^2-4)^2/(2√2x^2)^2]
=√(-x^4+24x^2-16)/(2√2x^2)
三角形ABC的面积=1/2BC*AC*sinC==[√(-x^4+24x^2-16)]/4
=√[-(x^2-12)^2+128]/4
所以当x^2=12,即x=2√3,面积最大
三角形ABC的面积的最大值(√128)/4=2√2
设BC=x
AC=√2x
根据余弦定理可得
cosC=(x^2+2x^2-4)/(2√2x^2)=(3x^2-4)/(2√2x^2)
sinC=√1-[(3x^2-4)^2/(2√2x^2)^2]
=√(-x^4+24x^2-16)/(2√2x^2)
三角形ABC的面积=1/2BC*AC*sinC==[√(-x^4+24x^2-16)]/4
=√[-(x^2-12)^2+128]/4
所以当x^2=12,即x=2√3,面积最大
三角形ABC的面积的最大值(√128)/4=2√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询