如图,已知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,请说明AB+AD=√3·AC。
2个回答
2011-03-11
展开全部
证明:如图,在AB上截取AE=AD、连接CE,做CF⊥AB,垂足为F
∵AC平分∠DAB
∴∠DAC=∠EAC
在△DAC和△EAC中
AE=AD
∠DAC=∠EAC
AC=AC
∴△DAC≌△EAC(SAS)
∴∠D=∠AEC、AE=AD
又∵∠CEB+∠AEC=180°
∠B+∠D=180°
∴∠B=∠CEB
∴△CEB为等腰三角形
又∵CF⊥EB
∴EF=EB【等腰三角形三线合一性质】
在Rt△CAF中
∠CAF=30°【平分线性质】
∴AF=(√3/2 )AC
即:2AF=√3AC
AF+AF=√3AC
(AE+EF)+(AB-BF)=√3AC
AE+AB=√3AC【这里AE=AD】
∴AB+AD=√3AC
∵AC平分∠DAB
∴∠DAC=∠EAC
在△DAC和△EAC中
AE=AD
∠DAC=∠EAC
AC=AC
∴△DAC≌△EAC(SAS)
∴∠D=∠AEC、AE=AD
又∵∠CEB+∠AEC=180°
∠B+∠D=180°
∴∠B=∠CEB
∴△CEB为等腰三角形
又∵CF⊥EB
∴EF=EB【等腰三角形三线合一性质】
在Rt△CAF中
∠CAF=30°【平分线性质】
∴AF=(√3/2 )AC
即:2AF=√3AC
AF+AF=√3AC
(AE+EF)+(AB-BF)=√3AC
AE+AB=√3AC【这里AE=AD】
∴AB+AD=√3AC
参考资料: http://zhidao.baidu.com/question/214610084.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询