函数凹凸区间怎么求
讨论二阶导数的正负,若在某区间为正则为凹区间,若在某区间为负则为凸区间。
一般地,把满足[f(x1)+f(x2)]/2>f[(x1+x2)/2]的区间称为函数f(x)的凹区间;反之为凸区间;凹凸性改变的点叫做拐点。
通常凹凸性由二阶导数确定:满足f''(x)>0的区间为f(x)的凹区间,反之为凸区间;
例:求y=x^3-x^4的凸凹区间和拐点。
解:y'=3x2-4x3,y''=6x-12x2;
y''>0,得:0<x<1/2;
所以,凹区间为(0,1/2);凸区间为(-∞,0),(1/2,+∞);拐点为(0,0),(1/2,1/16);
拓展资料:
函数的定义:
给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
如果你是高中生的话 你可以这么判断[f(x1)+f(x2)]/2<f[(x1+x2)/2]则函数为凸 反之为凹
二阶导数小于零,凹区间