若数列{an}的前n项和sn=n^+3n+1求a1+a3+a5+······+a21的值,谢谢!
2个回答
展开全部
a1=s1=1^2+3*1+1=5
sn=n^2+3n+1
s(n-1)=(n-1)^2+3(n-1)+1
=n^2-2n+1+3n-3+1
=n^2+n-1
an=sn-s(n-1)
=n^2+3n+1-(n^2+n-1)
=n^2+3n+1-n^2-n+1
=2n+2
an=2n+2(n>=2)
a3=2*3+2=8
a21=2*21+2=44
a1+a3+a5+······+a21
=a1+(a3+a21)*10/2
=5+(8+44)*5
=5+52*5
=5+260
=265
sn=n^2+3n+1
s(n-1)=(n-1)^2+3(n-1)+1
=n^2-2n+1+3n-3+1
=n^2+n-1
an=sn-s(n-1)
=n^2+3n+1-(n^2+n-1)
=n^2+3n+1-n^2-n+1
=2n+2
an=2n+2(n>=2)
a3=2*3+2=8
a21=2*21+2=44
a1+a3+a5+······+a21
=a1+(a3+a21)*10/2
=5+(8+44)*5
=5+52*5
=5+260
=265
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询