关于三角函数的证明题,急求!!
1个回答
展开全部
右边=[(sina/cosa)+(1/cosa)-1]/[(sina/cosa)-(1/cosa)+1] 分子分母同乘以cosa,得:
右边=[sina+1-cosa]/[sina-1+cosa]
=[2sin(a/2)cos(a/2)+1-(1-2sin²(a/2))]/[2sin(a/2)cos(a/2)-1+(1-2sin²(a/2))]
=[2sin(a/2)cos(a/2)+2sin²(a/2)]/[2sin(a/2)cos(a/2)-2sin²(a/2)]
=[cos(a/2)+sin(a/2)]/[cos(a/2)-sin(a/2)]
=[cos(a/2)+sin(a/2)]²/[cos²(a/2)-sin²(a/2)]
=(1+sina)/cosa=左边。
右边=[sina+1-cosa]/[sina-1+cosa]
=[2sin(a/2)cos(a/2)+1-(1-2sin²(a/2))]/[2sin(a/2)cos(a/2)-1+(1-2sin²(a/2))]
=[2sin(a/2)cos(a/2)+2sin²(a/2)]/[2sin(a/2)cos(a/2)-2sin²(a/2)]
=[cos(a/2)+sin(a/2)]/[cos(a/2)-sin(a/2)]
=[cos(a/2)+sin(a/2)]²/[cos²(a/2)-sin²(a/2)]
=(1+sina)/cosa=左边。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询