常微分方程的二阶非齐次线性的特解是怎么求出来的,二阶齐次微分方程求通解是根据什么?通俗一点,谢谢!

常微分方程二阶的非齐次的特解是怎么来的呢... 常微分方程二阶的非齐次的特解是怎么来的呢 展开
 我来答
Winsirn
2011-03-12 · TA获得超过103个赞
知道答主
回答量:66
采纳率:0%
帮助的人:77.1万
展开全部
考虑平面的表示方法
Ax+By+Cz=D
如果(x1,y1,z1),(x2,y2,z2)是齐次方程的两个线性无关解,(x0,y0,z0)是非齐次方程的解,那么平面可表示为
(x,y,z)=C1(x1,y1,z1)+C2(x2,y2,z2)+(x0,y0,z0)
即不共线的两个向量和空间中的一个点可以确定一个平面
这样,令
(x,y,z)=(x,x',x'')
微分方程方程A(t)x+B(t)x'+C(t)x''=D(t)的解为
(x,x',x'')=C1(x1,x1',x1'')+C2(x2,x2',x2'')+(x0,x0',x0'')

x=C1x1+C2x2+x0
所以n个线性无关的解可以表示一个n阶线性方程的通解
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式