求极限lim [x^(n+1)-(n+1)x+n]/(x-1)^2 x趋于1
1个回答
展开全部
解:lim(x->1)(x^(n+1)-(n+1)x+n)/(x-1)^2
=lim(x->1)(x^(n+1)-(n+1)x+n)'/((x-1)^2)'
=lim(x->1)((n+1)x^n-(n+1))/(2(x-1))
=lim(x->1)((n+1)x^n-(n+1))'/(2(x-1))'
=lim(x->1)(n(n+1)x^(n-1))/(2x)
=n(n+1)/2
=lim(x->1)(x^(n+1)-(n+1)x+n)'/((x-1)^2)'
=lim(x->1)((n+1)x^n-(n+1))/(2(x-1))
=lim(x->1)((n+1)x^n-(n+1))'/(2(x-1))'
=lim(x->1)(n(n+1)x^(n-1))/(2x)
=n(n+1)/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询