设函数f(x)在区间[a,b]上连续,且f(a)<a,f(b)>b。证明存在ξ∈(a,b),使得f(ξ)=ξ
4个回答
展开全部
证明:记F(x)=f(x)-x,显然它在[a,b]上连续
且F(a)=f(a)-a<0,F(b)=f(b)-b>0
由连续函数介值定理知存在ξ∈(a,b),使得F(ξ)=f(ξ)-ξ=0
即存在ξ∈(a,b),使得f(ξ)=ξ,命题得证。
且F(a)=f(a)-a<0,F(b)=f(b)-b>0
由连续函数介值定理知存在ξ∈(a,b),使得F(ξ)=f(ξ)-ξ=0
即存在ξ∈(a,b),使得f(ξ)=ξ,命题得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个证明很长,翻书或者搜索
最好的办法是随便下载一本高数或者数学分析的书,直接找连续函数的性质
最好的办法是随便下载一本高数或者数学分析的书,直接找连续函数的性质
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高等数学,课本上好像有证明过程,以前证过,现在忘了!不好意思!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |