设函数f(x)和g(x)在区间[a,b]上连续,且g(x)≠0,x∈[a,b],证明:至少存在一点ξ∈(a,b),使得:
题目有错,更正:(∫ f(x)dx) / (∫ g(x)dx)=f(ξ)/g(ξ)。 ∫ 符号的上下分别为b和a。 展开
令F(x)=f(x)在a到x上的积分,G(x)=g(x)在a到x上的积分,由柯西介值定理(有的翻译为哥西中值定理)一步即出。
令H(x)=F(x)G(b)-G(x)F(b),并注意到F(a)=G(a)=0,可证明H(a)=H(b)=0,利用拉格朗日中值并整理即可。
例如:
证明:若函数f(x)和g(x)在区间[a,b]上连续,
x 1 x∈(0,2a)
分段函数f(x) =
0,x=0 x=2a
如果把这个题目改成闭区间 [0,2a]
令 F(x) = f(a x) - f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a) - f(a)
F(0) = f(a) - f(0) = - F(a)
由闭区间连续函数介值定理,必然存在一点,使得F(X)的值为0
扩展资料:
解析:该定理给出了导函数连续的一个充分条件。(注意:必要性不成立,即函数在某点可导,不能推出导函数在该点连续,因为该点还可能是导函数的振荡间断点。)我们知道,函数在某一点的极限不一定等于该点处的函数值;但如果这个函数是某个函数的导函数,则只要这个函数在某点有极限,那么这个极限就等于函数在该点的取值。
证明:由导数的定义可知,函数在某点可导的充要条件是函数在该点的左右导数相等,因此分别来研究左右导数。
参考资料来源:百度百科-拉格朗日中值定理
使得F(X)的值为0。
解答过程如下:
令F(x)=f(x)在a到x上的积分,G(x)=g(x)在a到x上的积分,由柯西介值定理(有的翻译为哥西中值定理)一步即出。
令H(x)=F(x)G(b)-G(x)F(b),并注意到F(a)=G(a)=0,可证明H(a)=H(b)=0,利用拉格朗日中值并整理即可。
例如:
证明:若函数f(x)和g(x)在区间[a,b]上连续,x 1 x∈(0,2a)分段函数f(x) =0,x=0 x=2a
如果把这个题目改成闭区间 [0,2a] ,令 F(x) = f(a x) - f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a) - f(a)
F(0) = f(a) - f(0) = - F(a)
由闭区间连续函数介值定理,必然存在一点,使得F(X)的值为0。
罗尔中值定理
如果 R 上的函数 f(x) 满足以下条件:
(1)在闭区间 [a,b] 上连续。
(2)在开区间 (a,b) 内可导。
(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f'(ξ)=0。
证明:因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:
1、若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。
2、若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f'(ξ)=0。
好吧,我简要说下过程。令H(x)=F(x)G(b)-G(x)F(b),并注意到F(a)=G(a)=0,可证明H(a)=H(b)=0,利用拉格朗日中值并整理即可。
很感谢啊,等我理解一下,有问题还能再问吗?
可以啊,呵呵