英文翻译中文
Anunderstandingofterrainbehaviourundervehicularloadisofimportancetothestudyofvehicle–...
An understanding of terrain behaviour under vehicular load is of importance to the study of
vehicle–terrain interaction. In this chapter, various approaches to modelling terrain behaviour
are reviewed.
In the past, modelling the terrain as an elastic medium or as a rigid, perfectly plastic material
has been widely adopted. Modelling the terrain as an elastic medium, together with the theory
of elasticity, has found applications in the study of soil compaction and terrain damage due to
vehicular traffic. Modelling the terrain as a rigid, perfectly plastic material, together with the
theory of plastic equilibrium, has found applications in the prediction of the maximum traction
developed by off-road vehicles and of the thrust developed by lugs (grousers) of a vehicle
running gear. It has also been employed in the prediction of the resistance of a bulldozer
blade. While the idealization of the terrain as an elastic medium or as a rigid, perfectly plastic
material may provide a basis for elucidating certain aspects of the physical nature of vehicle–
terrain interaction, there are limitations. For instance, the theory of elasticity may only be
applied to dense terrain with vehicular load not exceeding a certain level, so that the terrain
may be considered elastic. On the other hand, the theory of plastic equilibrium can only be
employed in estimating the maximum vehicle load that the terrain can support without causing
its failure, but cannot be used to predict the sinkage of the vehicle due to its normal load
or the slip of the vehicle due to the shearing action of its running gear.
To overcome the limitations of modelling the terrain as an elastic medium or as a rigid, perfectly
plastic material, attempts have been made to model the terrain based on the concept of
the critical state soil mechanics, as it has the potential capability to predict both the stress and
strain in the terrain under vehicular load. However, due to the complexity and the variability
of terrain behaviour in the field, so far its applications to the study of vehicle–terrain interaction
are limited.
With advancements in computer technology and computational techniques in recent years,
modelling the terrain using the finite element method (FEM) or using the discrete (distinct)
element method (DEM) has emerged. These methods have the potential capability to examine
certain aspects of the physical nature of vehicle–terrain interaction in great detail. Their
basic concepts and applications to the study of vehicle–terrain interaction are outlined in
this chapter.
各位大大帮小弟一把吧!!!! 展开
vehicle–terrain interaction. In this chapter, various approaches to modelling terrain behaviour
are reviewed.
In the past, modelling the terrain as an elastic medium or as a rigid, perfectly plastic material
has been widely adopted. Modelling the terrain as an elastic medium, together with the theory
of elasticity, has found applications in the study of soil compaction and terrain damage due to
vehicular traffic. Modelling the terrain as a rigid, perfectly plastic material, together with the
theory of plastic equilibrium, has found applications in the prediction of the maximum traction
developed by off-road vehicles and of the thrust developed by lugs (grousers) of a vehicle
running gear. It has also been employed in the prediction of the resistance of a bulldozer
blade. While the idealization of the terrain as an elastic medium or as a rigid, perfectly plastic
material may provide a basis for elucidating certain aspects of the physical nature of vehicle–
terrain interaction, there are limitations. For instance, the theory of elasticity may only be
applied to dense terrain with vehicular load not exceeding a certain level, so that the terrain
may be considered elastic. On the other hand, the theory of plastic equilibrium can only be
employed in estimating the maximum vehicle load that the terrain can support without causing
its failure, but cannot be used to predict the sinkage of the vehicle due to its normal load
or the slip of the vehicle due to the shearing action of its running gear.
To overcome the limitations of modelling the terrain as an elastic medium or as a rigid, perfectly
plastic material, attempts have been made to model the terrain based on the concept of
the critical state soil mechanics, as it has the potential capability to predict both the stress and
strain in the terrain under vehicular load. However, due to the complexity and the variability
of terrain behaviour in the field, so far its applications to the study of vehicle–terrain interaction
are limited.
With advancements in computer technology and computational techniques in recent years,
modelling the terrain using the finite element method (FEM) or using the discrete (distinct)
element method (DEM) has emerged. These methods have the potential capability to examine
certain aspects of the physical nature of vehicle–terrain interaction in great detail. Their
basic concepts and applications to the study of vehicle–terrain interaction are outlined in
this chapter.
各位大大帮小弟一把吧!!!! 展开
展开全部
在车辆的负荷下面的地带行为的理解是对研究的重要性车辆-地带的交互作用。 在这一个章节中,各种不同的达成方式做模型地带行为被检讨。
在过去,做模型地带为一种有柔性的媒体或硬、非常塑料的材料已经广泛地被采用。 做模型地带为一种有柔性的媒体,连同理论一起弹力,发现土壤压实的研究和地带的申请损害适当的到车辆的交通。做模型地带为硬、非常塑料的材料,一起与这塑料平衡的理论,发现最大曳的预测的申请根据旷野车和被一辆车辆的柄 (grousers)发展的推进发展驱动装置。 它也已经在推土机的抵抗预测被雇用给。 地带的理想化当做一种有柔性的媒体或当做一硬、非常塑料材料可能提供阐明车辆的身体性质的特定方面的一种基础-地带交互作用,有限制。 地带的理想化当做一种有柔性的媒体或当做一硬、非常塑料材料可能提供阐明车辆的身体性质的特定方面的一种基础-
地带交互作用,有限制。举例来说,弹力的理论可能只有是应用的对密集的地带以车辆的负荷不超过一个特定的水平,所以地带可能被视为松紧带。另一方面,塑料平衡的理论只能是在估计地带能在没有引起下支援的最大车辆负荷方面雇用它的失败,但是不能够被用来由于它的正常负荷预测车辆的下沈或由于它的驱动装置的剪羊毛行动的车辆的滑。
要克服限制—做模型地带为一种有柔性的媒体或硬完全地塑料材料,尝试已经被做做模型以观念为基础的地带紧要关头的州弄脏技巧,于此它有潜在的能力预测两者的压迫力和在车辆的负荷下面的地带中劳累。 然而,由于复杂和易变田地的地带行为,到现在为止它车辆-地带交互作用的研究的申请被限制。
藉由近几年来的计算机技术和计算的技术中的进步,做模型使用有限的元素方法 (FEM)的地带或使用不连续者(distinct)元素方法 (DEM)已经出现。 这些方法有潜在的能力调查棒的细节的车辆-地带交互作用的身体性质的特定方面。 他们的基本观念和车辆-地带交互作用的研究的申请被概略说明在这一个章节。
楼主:你好!
这是我根据机器所翻译出来的文章,但愿对你有所帮助!
在过去,做模型地带为一种有柔性的媒体或硬、非常塑料的材料已经广泛地被采用。 做模型地带为一种有柔性的媒体,连同理论一起弹力,发现土壤压实的研究和地带的申请损害适当的到车辆的交通。做模型地带为硬、非常塑料的材料,一起与这塑料平衡的理论,发现最大曳的预测的申请根据旷野车和被一辆车辆的柄 (grousers)发展的推进发展驱动装置。 它也已经在推土机的抵抗预测被雇用给。 地带的理想化当做一种有柔性的媒体或当做一硬、非常塑料材料可能提供阐明车辆的身体性质的特定方面的一种基础-地带交互作用,有限制。 地带的理想化当做一种有柔性的媒体或当做一硬、非常塑料材料可能提供阐明车辆的身体性质的特定方面的一种基础-
地带交互作用,有限制。举例来说,弹力的理论可能只有是应用的对密集的地带以车辆的负荷不超过一个特定的水平,所以地带可能被视为松紧带。另一方面,塑料平衡的理论只能是在估计地带能在没有引起下支援的最大车辆负荷方面雇用它的失败,但是不能够被用来由于它的正常负荷预测车辆的下沈或由于它的驱动装置的剪羊毛行动的车辆的滑。
要克服限制—做模型地带为一种有柔性的媒体或硬完全地塑料材料,尝试已经被做做模型以观念为基础的地带紧要关头的州弄脏技巧,于此它有潜在的能力预测两者的压迫力和在车辆的负荷下面的地带中劳累。 然而,由于复杂和易变田地的地带行为,到现在为止它车辆-地带交互作用的研究的申请被限制。
藉由近几年来的计算机技术和计算的技术中的进步,做模型使用有限的元素方法 (FEM)的地带或使用不连续者(distinct)元素方法 (DEM)已经出现。 这些方法有潜在的能力调查棒的细节的车辆-地带交互作用的身体性质的特定方面。 他们的基本观念和车辆-地带交互作用的研究的申请被概略说明在这一个章节。
楼主:你好!
这是我根据机器所翻译出来的文章,但愿对你有所帮助!
2011-03-15
展开全部
地形行为的理解是很重要的,机动车负荷下的研究
vehicle-terrain互动。在这一章中,各种方法的造型地形的行为
进行了综述。
在过去,造型地形作为弹性介质或作为刚性,完美塑胶材料
已被广泛使用。造型地形作为弹性介质,连同理论
弹性,得到了很好的应用,在这项研究的土壤压实和地形伤害因
不准通车。地形作为刚性造型,完美塑胶材料,走到一起的感觉
平衡理论,得到了很好的应用塑料在预测最大牵引力
越野车辆的开发和研制开发的推力(grousers)的凸耳一辆车
运用齿轮。它也被用于预测电阻的一辆推土机
刀片。当ide...
vehicle-terrain互动。在这一章中,各种方法的造型地形的行为
进行了综述。
在过去,造型地形作为弹性介质或作为刚性,完美塑胶材料
已被广泛使用。造型地形作为弹性介质,连同理论
弹性,得到了很好的应用,在这项研究的土壤压实和地形伤害因
不准通车。地形作为刚性造型,完美塑胶材料,走到一起的感觉
平衡理论,得到了很好的应用塑料在预测最大牵引力
越野车辆的开发和研制开发的推力(grousers)的凸耳一辆车
运用齿轮。它也被用于预测电阻的一辆推土机
刀片。当ide...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询