高等数学中有界、连续、极限、可积之间都是什么关系,都是其他的什么条件啊?请高手总结一下吧。。。

求丰Ro
2011-03-16 · TA获得超过1432个赞
知道小有建树答主
回答量:268
采纳率:100%
帮助的人:152万
展开全部
只讨论函数为单变量时的情况即 函数f(x)
f(x)在某个区间(设为I)上有界意味着 存在一个M>0,使得对所有x属于I,|f(x)|<M
f(x)在x0处有极限意味着 存在常数A,使得对任意e>0,存在a>0,对所有的x属于
(x0-a,x0)并上(x0,x0+a) 都有|f(x)-A|<e (注意此时f(x)在x0处并不一定有定义) 这个极限就是A
f(x)在x0处连续意味着f(x)在x0处有定义,并且上面所提到的A就等于f(x0)
f(x)在区间I上连续等价于f(x)在I上的每一点均连续
f(x)可积这个定义比较复杂 建议百度一下黎曼可积

下面说它们之间的关系
函数在某一点连续必定在该点有极限(且这个极限就是该点的函数值)但反过来不一定,因为f(x)在某一点有极限时 在该点并不一点有定义 所以不一定连续
函数在某一点连续也必定意味着函数在该点附近的任意一个有定义的去心邻域内有界,反过来不一定,即有界不一定连续
函数在某个区间内连续则必定在该区间上可积,但反过来不一定 例如著名的黎曼函数,在[0,1]上的所有有理点(除了0)都不连续,但它确是可积的
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式