求极限lim(x→0){(2x-sin2x)/xsin^2x}
3个回答
展开全部
lim(x→0){(2x-sin2x)/xsin^2x}=lim(x→0){(2-2cos2x)/(sin^2x+2xsinxcosx)} (分子分母分别求导)
=lim(x→0){(4sin2x)/(2sinxcosx+sin2x+2xcos2x)}=lim(x→0){(8cos2x)/(4cos2x-4xsin2x+2cos2x)}
=8/6=4/3
=lim(x→0){(4sin2x)/(2sinxcosx+sin2x+2xcos2x)}=lim(x→0){(8cos2x)/(4cos2x-4xsin2x+2cos2x)}
=8/6=4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x→0时,2x/sin2x=1
即x→0时,2x-sin2x=0
所以lim(x→0){(2x-sin2x)/xsin^2x} =0
即x→0时,2x-sin2x=0
所以lim(x→0){(2x-sin2x)/xsin^2x} =0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x→0){(2x-sin2x)/(x*sin^2x)}
= lim(x→0){(2x-sin2x)/(x*x^2*(sin^2x/x^2))}
= lim(x→0){(2x-sin2x)/(x*x^2) * lim(x→0){(sin^2x/x^2)}
= lim(x→0){(2-2cos2x)/(3x^2)
= lim(x→0){(4sin2x)/(6x)
= lim(x→0){(8cos2x)/(6)
= 4/3
= lim(x→0){(2x-sin2x)/(x*x^2*(sin^2x/x^2))}
= lim(x→0){(2x-sin2x)/(x*x^2) * lim(x→0){(sin^2x/x^2)}
= lim(x→0){(2-2cos2x)/(3x^2)
= lim(x→0){(4sin2x)/(6x)
= lim(x→0){(8cos2x)/(6)
= 4/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询